93 research outputs found

    Development of an in vitro three dimensional loading-measurement system for long bone fixation under multiple loading conditions: a technical description

    Get PDF
    The purpose of this investigation was to design and verify the capabilities of an in vitro loading-measurement system that mimics in vivo unconstrained three dimensional (3D) relative motion between long bone ends, applies uniform load components over the entire length of a test specimen, and measures 3D relative motion between test segment ends to directly determine test segment construct stiffness free of errors due to potting-fixture-test machine finite stiffness

    Correlations of Behavioral Deficits with Brain Pathology Assessed through Longitudinal MRI and Histopathology in the R6/2 Mouse Model of HD

    Get PDF
    Huntington's disease (HD) is caused by the expansion of a CAG repeat in the huntingtin (HTT) gene. The R6/2 mouse model of HD expresses a mutant version of exon 1 HTT and develops motor and cognitive impairments, a widespread huntingtin (HTT) aggregate pathology and brain atrophy. Despite the vast number of studies that have been performed on this model, the association between the molecular and cellular neuropathology with brain atrophy, and with the development of behavioral phenotypes remains poorly understood. In an attempt to link these factors, we have performed longitudinal assessments of behavior (rotarod, open field, passive avoidance) and of regional brain abnormalities determined through magnetic resonance imaging (MRI) (whole brain, striatum, cortex, hippocampus, corpus callosum), as well as an end-stage histological assessment. Detailed correlative analyses of these three measures were then performed. We found a gender-dependent emergence of motor impairments that was associated with an age-related loss of regional brain volumes. MRI measurements further indicated that there was no striatal atrophy, but rather a lack of striatal growth beyond 8 weeks of age. T2 relaxivity further indicated tissue-level changes within brain regions. Despite these dramatic motor and neuroanatomical abnormalities, R6/2 mice did not exhibit neuronal loss in the striatum or motor cortex, although there was a significant increase in neuronal density due to tissue atrophy. The deposition of the mutant HTT (mHTT) protein, the hallmark of HD molecular pathology, was widely distributed throughout the brain. End-stage histopathological assessments were not found to be as robustly correlated with the longitudinal measures of brain atrophy or motor impairments. In conclusion, modeling pre-manifest and early progression of the disease in more slowly progressing animal models will be key to establishing which changes are causally related. © 2013 Rattray et al

    Transmembrane protein PERP is a component of tessellate junctions and of other junctional and non-junctional plasma membrane regions in diverse epithelial and epithelium-derived cells

    Get PDF
    Protein PERP (p53 apoptosis effector related to PMP-22) is a small (21.4 kDa) transmembrane polypeptide with an amino acid sequence indicative of a tetraspanin character. It is enriched in the plasma membrane and apparently contributes to cell-cell contacts. Hitherto, it has been reported to be exclusively a component of desmosomes of some stratified epithelia. However, by using a series of newly generated mono- and polyclonal antibodies, we show that protein PERP is not only present in all kinds of stratified epithelia but also occurs in simple, columnar, complex and transitional epithelia, in various types of squamous metaplasia and epithelium-derived tumors, in diverse epithelium-derived cell cultures and in myocardial tissue. Immunofluorescence and immunoelectron microscopy allow us to localize PERP predominantly in small intradesmosomal locations and in variously sized, junction-like peri- and interdesmosomal regions (“tessellate junctions”), mostly in mosaic or amalgamated combinations with other molecules believed, to date, to be exclusive components of tight and adherens junctions. In the heart, PERP is a major component of the composite junctions of the intercalated disks connecting cardiomyocytes. Finally, protein PERP is a cobblestone-like general component of special plasma membrane regions such as the bile canaliculi of liver and subapical-to-lateral zones of diverse columnar epithelia and upper urothelial cell layers. We discuss possible organizational and architectonic functions of protein PERP and its potential value as an immunohistochemical diagnostic marker

    MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice

    Get PDF
    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases

    Association between anthropometric indices and cardiometabolic risk factors in pre-school children

    Get PDF
    ABSTRACT: The world health organization (WHO) and the Identification and prevention of dietary- and lifestyle-induced health effects in children and infants- study (IDEFICS), released anthropometric reference values obtained from normal body weight children. This study examined the relationship between WHO [body mass index (BMI) and triceps- and subscapular-skinfolds], and IDEFICS (waist circumference, waist to height ratio and fat mass index) anthropometric indices with cardiometabolic risk factors in pre-school children ranging from normal body weight to obesity. Methods: A cross-sectional study with 232 children (aged 4.1 ± 0.05 years) was performed. Anthropometric measurements were collected and BMI, waist circumference, waist to height ratio, triceps- and subscapular-skinfolds sum and fat mass index were calculated. Fasting glucose, fasting insulin, homeostasis model analysis insulin resistance (HOMA-IR), blood lipids and apolipoprotein (Apo) B-100 (Apo B) and Apo A-I were determined. Pearson’s correlation coefficient, multiple regression analysis and the receiver-operating characteristic (ROC) curve analysis were run. Results: 51 % (n = 73) of the boys and 52 % (n = 47) of the girls were of normal body weight, 49 % (n = 69) of the boys and 48 % (n = 43) of the girls were overweight or obese. Anthropometric indices correlated (p 0.68 to AUC < 0.76). Conclusions: WHO and IDEFICS anthropometric indices correlated similarly with fasting insulin and HOMA-IR. The diagnostic accuracy of the anthropometric indices as a proxy to identify children with insulin resistance was similar. These data do not support the use of waist circumference, waist to height ratio, triceps- and subscapular- skinfolds sum or fat mass index, instead of the BMI as a proxy to identify pre-school children with insulin resistance, the most frequent alteration found in children ranging from normal body weight to obesity

    Activity of lapatinib a novel HER2 and EGFR dual kinase inhibitor in human endometrial cancer cells

    Get PDF
    In this study, we explore the therapeutic potential of lapatinib a selective inhibitor of both the EGFR and HER2 tyrosine kinases for the treatment of endometrial cancer. The effect of lapatinib on tumour cell growth and receptor activation was studied in a panel of human endometrial cancer cell lines. Candidate molecular markers predicting sensitivity were assessed by baseline gene expression profiling, ELISA, and western blot analyses. Multiple drug effect/combination index (CI) isobologram analysis was used to study the interactions between chemotherapeutic drugs and lapatinib. Concentration-dependent anti-proliferative effects of lapatinib were seen in all endometrial cancer cell lines tested, but varied significantly between individual cell lines (IC50 range: 0.052–10.9 μmol). HER2 overexpression or increased expression of EGFR was significantly associated with in vitro sensitivity (P=0.024 or 0.011, respectively). Lapatinib exerts growth inhibition in a PTEN-independent manner. Sensitive cell lines also exhibited increased expression of EGFR ligands or HER3. In contrast, lapatinib-resistant cell lines exhibited high androgen receptor (AR) levels or epithelial-to-mesenchymal transition (post-EMT) features. In endometrial cancer cells, at a wide range of clinically achievable drug concentrations, additive and synergistic interactions were observed for lapatinib plus carboplatin, paclitaxel, docetaxel, and doxorubicin. These observations provide a clear biologic rational to test lapatinib as a single agent or in combination with chemotherapy in endometrial cancer with HER2 overexpression. Expression of EGFR, its ligands, HER3, AR, and post-EMT markers warrant further evaluation to help define patients with HER2-nonoverexpressing endometrial cancer most likely to benefit from lapatinib

    Breast cancer-specific mutations in CK1ε inhibit Wnt/β-catenin and activate the Wnt/Rac1/JNK and NFAT pathways to decrease cell adhesion and promote cell migration

    Get PDF
    Introduction Breast cancer is one of the most common types of cancer in women. One of the genes that were found mutated in breast cancer is casein kinase 1 epsilon (CK1ε). Because CK1ε is a crucial regulator of the Wnt signaling cascades, we determined how these CK1ε mutations interfere with the Wnt pathway and affect the behavior of epithelial breast cancer cell lines. Methods We performed in silico modeling of various mutations and analyzed the kinase activity of the CK1ε mutants both in vitro and in vivo. Furthermore, we used reporter and small GTPase assays to identify how mutation of CK1ε affects different branches of the Wnt signaling pathway. Based on these results, we employed cell adhesion and cell migration assays in MCF7 cells to demonstrate a crucial role for CK1ε in these processes. Results In silico modeling and in vivo data showed that autophosphorylation at Thr 44, a site adjacent to the breast cancer point mutations in the N-terminal lobe of human CK1ε, is involved in positive regulation of the CK1ε activity. Our data further demonstrate that, in mammalian cells, mutated forms of CK1ε failed to affect the intracellular localization and phosphorylation of Dvl2; we were able to demonstrate that CK1ε mutants were unable to enhance Dvl-induced TCF/LEF-mediated transcription, that CK1ε mutants acted as loss-of-function in the Wnt/β-catenin pathway, and that CK1ε mutants activated the noncanonical Wnt/Rac-1 and NFAT pathways, similar to pharmacological inhibitors of CK1. In line with these findings, inhibition of CK1 promoted cell migration as well as decreased cell adhesion and E-cadherin expression in the breast cancer-derived cell line MCF7. Conclusions In summary, these data suggest that the mutations of CK1ε found in breast cancer can suppress Wnt/β-catenin as well as promote the Wnt/Rac-1/JNK and Wnt/NFAT pathways, thus contributing to breast cancer development via effects on cell adhesion and migration. In terms of molecular mechanism, our data indicate that the breast cancer point mutations in the N-terminal lobe of CK1ε, which are correlated with decreased phosphorylation activities of mutated forms of CK1ε both in vitro and in vivo, interfere with positive autophosphorylation at Thr 4

    CD44(+)/CD24(- )breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis

    Get PDF
    INTRODUCTION: A subpopulation (CD44(+)/CD24(-)) of breast cancer cells has been reported to have stem/progenitor cell properties. The aim of this study was to investigate whether this subpopulation of cancer cells has the unique ability to invade, home, and proliferate at sites of metastasis. METHODS: CD44 and CD24 expression was determined by flow cytometry. Northern blotting was used to determine the expression of proinvasive and 'bone and lung metastasis signature' genes. A matrigel invasion assay and intracardiac inoculation into nude mice were used to evaluate invasion, and homing and proliferation at sites of metastasis, respectively. RESULTS: Five among 13 breast cancer cell lines examined (MDA-MB-231, MDA-MB-436, Hs578T, SUM1315, and HBL-100) contained a higher percentage (>30%) of CD44(+)/CD24(- )cells. Cell lines with high CD44(+)/CD24(- )cell numbers express basal/mesenchymal or myoepithelial but not luminal markers. Expression levels of proinvasive genes (IL-1α, IL-6, IL-8, and urokinase plasminogen activator [UPA]) were higher in cell lines with a significant CD44(+)/CD24(- )population than in other cell lines. Among the CD44(+)/CD24(-)-positive cell lines, MDA-MB-231 has the unique property of expressing a broad range of genes that favor bone and lung metastasis. Consistent with previous studies in nude mice, cell lines with CD44(+)/CD24(- )subpopulation were more invasive than other cell lines. However, only a subset of CD44(+)/CD24(-)-positive cell lines was able to home and proliferate in lungs. CONCLUSION: Breast cancer cells with CD44(+)/CD24(- )subpopulation express higher levels of proinvasive genes and have highly invasive properties. However, this phenotype is not sufficient to predict capacity for pulmonary metastasis

    Effect of rehabilitation exercise durations on the dynamic bone repair process by coupling polymer scaffold degradation and bone formation

    Get PDF
    Implantation of biodegradable scaffold is considered as a promising method to treat bone disorders, but knowledge of the dynamic bone repair process is extremely limited. In this study, based on the representative volume cell of a periodic scaffold, the influence of rehabilitation exercise duration per day on the bone repair was investigated by a computational framework. The framework coupled scaffold degradation and bone remodeling. The scaffold degradation was described by a function of stochastic hydrolysis independent of mechanical stimulation, and the bone formation was remodeled by a function of the mechanical stimulation, i.e., strain energy density. Then, numerical simulations were performed to study the dynamic bone repair process. The results showed that the scaffold degradation and the bone formation in the process were competitive. An optimal exercise duration per day emerged. All exercise durations promoted the bone maturation with a final Young's modulus of 1.9 ± 0.3 GPa. The present study connects clinical rehabilitation and fundamental research, and is helpful to understand the bone repair process and further design bone scaffold for bone tissue engineering

    The Effect of Sustained Compression on Oxygen Metabolic Transport in the Intervertebral Disc Decreases with Degenerative Changes

    Get PDF
    Intervertebral disc metabolic transport is essential to the functional spine and provides the cells with the nutrients necessary to tissue maintenance. Disc degenerative changes alter the tissue mechanics, but interactions between mechanical loading and disc transport are still an open issue. A poromechanical finite element model of the human disc was coupled with oxygen and lactate transport models. Deformations and fluid flow were linked to transport predictions by including strain-dependent diffusion and advection. The two solute transport models were also coupled to account for cell metabolism. With this approach, the relevance of metabolic and mechano-transport couplings were assessed in the healthy disc under loading-recovery daily compression. Disc height, cell density and material degenerative changes were parametrically simulated to study their influence on the calculated solute concentrations. The effects of load frequency and amplitude were also studied in the healthy disc by considering short periods of cyclic compression. Results indicate that external loads influence the oxygen and lactate regional distributions within the disc when large volume changes modify diffusion distances and diffusivities, especially when healthy disc properties are simulated. Advection was negligible under both sustained and cyclic compression. Simulating degeneration, mechanical changes inhibited the mechanical effect on transport while disc height, fluid content, nucleus pressure and overall cell density reductions affected significantly transport predictions. For the healthy disc, nutrient concentration patterns depended mostly on the time of sustained compression and recovery. The relevant effect of cell density on the metabolic transport indicates the disturbance of cell number as a possible onset for disc degeneration via alteration of the metabolic balance. Results also suggest that healthy disc properties have a positive effect of loading on metabolic transport. Such relation, relevant to the maintenance of the tissue functional composition, would therefore link disc function with disc nutrition
    corecore